Packing and Covering Triangles in K 4-free Planar Graphs

نویسندگان

  • Penny E. Haxell
  • Alexandr V. Kostochka
  • Stéphan Thomassé
چکیده

We show that every K4-free planar graph with at most ν edge-disjoint triangles contains a set of at most 32ν edges whose removal makes the graph triangle-free. Moreover, equality is attained only when G is the edge-disjoint union of 5-wheels plus possibly some edges that are not in triangles. We also show that the same statement is true if instead of planar graphs we consider the class of graphs in which each edge belongs to at most two triangles. In contrast, it is known that for any c < 2 there are K4-free graphs with at most ν edge-disjoint triangles that need more than cν edges to cover all triangles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing and Covering Triangles in Planar Graphs

Tuza conjectured that if a simple graph G does not contain more than k pairwise edgedisjoint triangles, then there exists a set of at most 2k edges that meets all triangles in G. It has been shown that this conjecture is true for planar graphs and the bound is sharp. In this paper, we characterize the set of extremal planar graphs.

متن کامل

Packing triangles in bounded degree graphs

We consider the two problems of finding the maximum number of node disjoint triangles and edge disjoint triangles in an undirected graph. We show that the first (respectively second) problem is polynomially solvable if the maximum degree of the input graph is at most 3 (respectively 4), whereas it is APX-hard for general graphs and NP-hard for planar graphs if the maximum degree is 4 (respectiv...

متن کامل

Dense Graphs With a Large Triangle Cover Have a Large Triangle Packing

It is well known that a graph with m edges can be made triangle-free by removing (slightly less than) m/2 edges. On the other hand, there are many classes of graphs which are hard to make triangle-free in the sense that it is necessary to remove roughly m/2 edges in order to eliminate all triangles. We prove that dense graphs that are hard to make triangle-free have a large packing of pairwise ...

متن کامل

Adapted list colouring of planar graphs

Given a (possibly improper) edge-colouring F of a graph G, a vertex colouring of G is adapted to F if no colour appears at the same time on an edge and on its two endpoints. If for some integer k, a graph G is such that given any list assignment L to the vertices of G, with |L(v)| ≥ k for all v, and any edgecolouring F of G, G admits a colouring c adapted to F where c(v) ∈ L(v) for all v, then ...

متن کامل

Adapted list coloring of planar graphs

Given a (possibly improper) edge-colouring F of a graph G, a vertex colouring of G is adapted to F if no colour appears at the same time on an edge and on its two endpoints. If for some integer k, a graph G is such that given any list assignment L to the vertices of G, with |L(v)| ≥ k for all v, and any edgecolouring F of G, G admits a colouring c adapted to F where c(v) ∈ L(v) for all v, then ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2012